Printe	ed P	Page:-03 Subject Code:- AMTBT0201 Roll. No:
NO	ID A	A INSTITUTE OF ENGINEERING AND TECHNOLOGY, GREATER NOIDA (An Autonomous Institute Affiliated to AKTU, Lucknow) M.Tech SEM: II - THEORY EXAMINATION (2024- 2025)
Tim	o. 2	Subject: Bioinformatics Hours Max. Marks: 70
		Instructions:
IMP: 1. This Questi	Ver s Qi ions	ify that you have received the question paper with the correct course, code, branch etc. uestion paper comprises of three Sections -A, B, & C. It consists of Multiple Choice (MCQ's) & Subjective type questions. The property of the paper with the correct course, code, branch etc. It consists of Multiple Choice (MCQ's) & Subjective type questions.
		te your answers with neat sketches wherever necessary.
		e suitable data if necessary.
6. No	shee	bly, write the answers in sequential order. et should be left blank. Any written material after a blank sheet will not be /checked.
SECT	<u>'IOI</u>	<u>N-A</u> 15
1. Atte	emp	t all parts:-
1-a. CpG islands and codon bi		CpG islands and codon bias are tools used in eukaryotic genomics to 1 CO1, K1
	(a)	identify open reading frames
	(b)	differentiate between eukaryotic and prokaryotic DNA sequences
	(c)	find regulatory sequences
	(d)	look for DNA-binding domains
1-b. I		Phylogenetic relationship can be shown by. CO2, K1
	(a) (b)	
	(c)	
	(d)	
1-c.	` ,	If the two sequences share significant similarity, it is extremely that the extensive similarity between the two sequences has been acquired randomly, meaning that the two sequences must have derived from a common evolutionary origin. CO3, K3
	(a)	unlikely
	(b)) possible
	(c)	likely
	(d)) relevant

1-d.	W	Thich of the following is an incorrect statement? CO4, K2	1
	(a)	In a phylogram, the branch lengths represent the amount of evolutionary diverger	nce
	(b)	Trees like cladogram are said to be scaled	
	(c)	The scaled trees have the advantage of showing both the evolutionary relationship information about the relative divergence time of the branches	ps
	(d)	In a cladogram, the external taxa line up neatly in a row or column	
1-e.	` /	hain-termination is a type of CO5, K2	1
1 0.	(a)	Sequencing Sequencing	•
	(b)	Vector generation	
	(c)	Antibiotic production	
	(d)	Gene manipulation	
2. Atte	` ,	all parts:-	
2.a.	-	ame two protein sequence database? CO1, K1	2
2.b.		ow can we classify alignment based on number of sequences? CO2, K2	2
2.c.	W	That is the first step in distance based phylogenetic tree construction ethod? CO3, K2	2
2.d.		That is proteome? CO4, K1	2
2.e.		Thy washing is required, once the sample and probes are hybridized in	2
		icroarray studies? CO5, K3	
SECT	ION-	<u>B</u>	20
3. Ans	swer a	ny <u>five</u> of the following:-	
3-a.	W	rite short note on TIGR database? CO1, K1	4
3-b.		That do you understand by NCBI? Write about its importance in ioinformatics? CO1, K2	4
3-c.	W	That are the applications of BLAST? CO2, K2	4
3-d.	W	That is the need of database searching? CO2, K3	4
3.e.	W	rite about DNA strider tool? CO3, K2	4
3.f.	W	rite short note on glycosylation?	4
3.g.	\mathbf{D}_{1}	raw a flow chart of microarray data analysis?	4
SECT	ION-	\mathbf{C}	35
4. Ans	swer a	ny <u>one</u> of the following:-	
4-a.		That do you understand by term Bioinformatics? Why there is a need informatics ols and resources in biology? CO1, K2	7
4-b.		escribe in details medical databases and genome databases with examples? CO1,	7
5. Ans	swer a	ny <u>one</u> of the following:-	
5-a.	D	escribe the multiple sequence alignment algorithm on which CLUSTAL rogram is based? CO2, K2	7

5-b.	Why we use dynamic programming algorithm? Describe various steps involved in dynamic programming? CO3, K2	7
6. Answ	er any <u>one</u> of the following:-	
6-a.	Describe some distance matrix based phylogenetic methods? CO3, K3	7
6-b.	Suppose you find some discrepancy in the phylogenetic tree. What will you check to minimize the error? CO3, K3	7
7. Answ	er any <u>one</u> of the following:-	
7-a.	What is the different kind of interactions you will consider while studying protein-protein interactions? CO4, K2	7
7-b.	There is so much diversity in proteins. Describe in detail what kind of process is responsible for that? CO4, K3	7
8. Answ	er any <u>one</u> of the following:-	
8-a.	What kind of databases you will explore, if you want to identify non-synonymous SNPs associated with a disease? CO5, K2	7
8-b.	You want to study deleterious effect of SNP's. You will focus your study on synonymous or non-synonymous SNPs. Explain? CO5, K3	7

